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We rigorously derive a linear kinetic equation of Fokker–Planck type for a 2-D
Lorentz gas in which the obstacles are randomly distributed.

Each obstacle of the Lorentz gas generates a potential eaV(|x|e ), where V is a
smooth radially symmetric function with compact support, and a > 0. The
density of obstacles diverges as e−d, where d > 0. We prove that when 0 <
a < 1/8 and d=2a+1, the probability density of a test particle converges as
e Q 0 to a solution of our kinetic equation.
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1. INTRODUCTION

In this paper we address the problem of a rigorous derivation of a linear
kinetic equation in the limit of grazing collisions, that is, when each colli-
sion changes only slightly the velocity of a particle.

We consider the behavior of a test particle under the action of a 2-D
random distribution of obstacles (also called scatterers). Given a small
parameter e > 0, the potential generated from a scatterer at a position
c ¥ R2 is of the form:

V̌e(x−c)=eaV 1 |x−c|
e
2 , (1)
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and, for the sake of simplicity, we shall assume that the unrescaled radial
potential V is a smooth function with compact support.

The distribution of scatterers is a Poisson law of intensity me=e−dm,
where m, d > 0 are fixed.

The Boltzmann–Grad limit would consist in making d=1, a=0
and letting e Q 0. The limit would then lead to the solution of a linear
Boltzmann equation (cf. [G], [Bo, Bu, Si], [De, Pu], [S1], [S2]). In
order to get an equation of Fokker–Planck type, we propose a slightly dif-
ferent scaling, namely a > 0, d=2a+1. The fact that a > 0 exactly means
that we are in the limit of grazing collisions: the potential created by a
scatterer being weak, the particle will not deviate very much from a straight
trajectory. On the other hand, in order to get a finite effect at the end (we
do not wish to get the solution of the free transport equation), the density
of scatterers has to grow faster than in the Boltzmann–Grad limit when
e Q 0. This explains why d > 1. The extra technical assumption that
a < 1/8 allows us to rigorously prove the convergence toward the solution
of a linear kinetic equation of Fokker–Planck type of the test particle
probability density in the phase space.

The same problem for a=1/2 was studied in [Du, Go, Le], where the
convergence is obtained by proving compactness of the family of measures
associated to the stochastic processes describing the motion of the light
particle for e > 0. Here we use different techniques, related to those devel-
oped in [G] to prove the validity of the linear Boltzmann equation. Notice
that we are allowed to use these techniques after choosing a value for a

such that the ratio between the mean free path and the size of the obstacles
diverges (for this we need in general a < 1/2), whereas in [Du, Go, Le] this
ratio is constant. We are then in a low density limit with respect to [Du,
Go, Le].

As for the case of the long-range potentials considered in [De, Pu], it
does not seem possible to directly apply the techniques of [G], because of
the lack of a semi-explicit form of the solution of the limit equation.
Therefore, we produce an explicit estimate of the non-Markovian compo-
nent of the distribution density, and use a semi-explicit form of the solu-
tions of a family of Boltzmann equations with a cross section concentrating
on grazing collisions.

Note also that in a forthcoming paper (Cf. [Pou, Va]), Poupaud and
Vasseur propose for closely related problems a different approach consist-
ing in passing to the limit directly in the equation, and not in a semi-
explicit form of its solution.

Note finally that for the nonlinear Fokker–Planck equation (also
called Landau equation) (Cf. [Lif, Pi], [De, Vi]), no rigorous derivation
from an N-particle system exists, even in the framework of local in time
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solutions, whereas such a result exists in the case of the Boltzmann equa-
tion (Cf. [Lanf], [Ce, Il, Pu]).

In Section 2, we present our notations and our main theorem. Sec-
tions 3 and 4 are devoted to its proof. More precisely, in Section 3, a single
grazing collision is studied, while in section 4 the collective effect of colli-
sions is taken into account.

The same technique can be applied in dimension d bigger than two,
where d=2a+d−1, by simply putting a little bit more effort in evaluating
the bound on the probability of recollisions, due to the fact that now the
trajectories don’t lie in general on a plane. In this case, convergence is
obtained for a < 1/4, the upper bound for a being fixed by the require-
ments that the probabilty of overlappings of two obstacles met by the par-
ticle trajectory is negligeable in the limit.

2. NOTATIONS AND RESULTS

In the sequel we shall denote by B(x, R)={y ¥ R2/ |x−y| < R} the
open disk of center x and radius R, by C any positive constant (possibly
depending on the fixed parameters, but independent of e), and by j=j(e)
any nonnegative function vanishing when e Q 0.

We fix an arbitrary time T > 0 and consider our dynamical problem
for times t such that 0 [ t [ T.

We use a Poisson repartition of fixed scatterers in R2 of parameter
me=e−dm, where m, d > 0 are fixed and e ¥ ]0, 1]. The probability distribu-
tion of finding exactly N obstacles in a bounded (or more generally of
finite measure) measurable set L … R2 is given by:

P(dcN)=e−me |L|
mNe
N!
dc1...dcN, (2)

where c1...cN=cN are the positions of the scatterers and |L| denotes the
Lebesgue measure of L.

The expectation with respect to the Poisson repartition of parameter me
will be denoted by E e.

We now introduce a radial potential V (here, V will at the same time
denote the function of two variables (x1, x2) and the function of the radial
variable r=`x21+x

2
2, since no confusion can occur) such that:

1. V ¥ C2(R2);

2. V(0) > 0 and rQ V(r) is strictly decreasing in [0, 1];

3. supp V … [0, 1].
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Then, we consider the Hamiltonian flow T tc, e (or more simply T tc when no
confusion can occur) generated by the distribution of obstacles c and asso-
ciated with the potential V̌e given in (1), that is T tc, e(x, v)=(xc(t), vc(t)),
where xc(t), vc(t) satisfy the Newtonian law of motion:

ẋc(t)=vc(t), (3)

v̇c(t)=− ea−1 C
c ¥ c

NV 1 |x−c|
e
2 , (4)

xc(0)=x, vc(0)=v. (5)

As discussed for example in [De, Pu], the quantity T tc, e(x, v) is well
defined for all t ¥ R, x ¥ R2, v ¥ S1, except maybe when c belongs to a
negligeable set with respect to the Poisson repartition.

For a given initial datum fin ¥ L1 5 L. 5 C(R2×R2), we can define
the following expectation:

fe(t, x, v)=E e[fin(T
−t
c, e(x, v))]. (6)

The main result is then the following:

Theorem 1. Let a ¥ ]0, 1/8[ and d=2a+1, fin be an initial datum
belonging to L1 5W1,.(R2×R2) and V be a potential satisfying 1., 2., 3.
Then, for any T > 0, the quantity fe defined by (3)–(6) converges when
e Q 0 to h in C([0, T]; W −2, 1

loc (R
2×S1)), where h is the (unique) weak solu-

tion of the following linear equation of Fokker–Planck type:

(“t+v·Nx) h(t, x, v)=zgvh(t, x, v),

h(0, x, v)=fin(x, v).
(7)

In (7), gv is the Laplace–Beltrami operator on S1 (that is, if f̄(h)=
f(cos h, sin h), thengvf(cos h, sin h)=f̄'(h)), and

z=
m

2
F
1

−1

1F 1
r

r

u
VŒ 1r
u
2 du

`1−u2
22 dr. (8)

Note that since rQ r VŒ(r) is bounded, we have z <+.. We also
obviously have z > 0 under our assumptions on m and V.

The remaining part of this work will be devoted to the proof of
Theorem 1.
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3. STUDY OF GRAZING COLLISIONS

This part is devoted to the proof of the following proposition, which
explains the asymptotic behavior of the scattering angle as a function of the
impact parameter in the limit when the potential is rescaled as VQ ea V
with e Q 0, a > 0.

Proposition 1. Consider the deflection angle h1(r, e) of a particle
with impact parameter r due to a scatterer generating a radial potential
ea V, where a > 0 and V satisfies assumptions 1., 2., 3. Then, the following
asymptotic formula holds:

h1(r, e)=−2 ea F
1

r

r

w
VŒ 1 r
w
2 dw

`1−w2
+O(e2a),

where the O(e2a) is uniform in r (when r ¥ [−1, 1]).

Proof of Proposition 1. Note that for e > 0 small enough,

eaV(0) < 12 . (9)

Therefore, the deflection angle is given (when r > 0) by the classical
formula:

h1(r, e)=p−2 F
+.

rmin(r, e)

r

`1− r
2

r2−2 ea V(r)

dr
r2

=p−2 F
r

rmin(r, e)

0

dw

`1−w2−2eaV(rw)
, (10)

where w=r

r and rmin(r, e) is implicitly defined by

1
2

r2

r2min(r, e)
+eaV(rmin(r, e))=

1
2
. (11)

We denote by K a constant related to the two first derivatives of V:

K= sup
r ¥ [0, 1]

(|V(r)|+r |VŒ(r)|+r2 |V'(r)|),

and we consider only parameters e > 0 which are such that

2 eaK < 1/2. (12)
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Then, we can perform the change of variables

w

`1−2eaV(rw)
=u, (13)

so that

du=
1

`1−2eaV(rw)
51− ea

r

w V
−(rw)

1−2eaV(rw)
6 dw. (14)

We obtain for the deflection angle

h1(r, e)=p−2 F
1

0

1

1−
ea
r

w VŒ(
r

w)
1−2 ea V(rw)

du

`1−u2

=2 F
1

r

11− 1−2eaV(rw)
1− ea {2V(rw)+

r

w VŒ(
r

w)}
2 du

`1−u2
(15)

(remember that V(rw)=0 for r > w (or r > u)).
Using the identity

1
1−x

=1+
x
1−x

,

and (12), we see that

h1(r, e)=−2 ea F
1

r

r

w
VŒ 1 r
w
2 du

`1−u2
+e2a L(r, e), (16)

with

|L(r, e)| [ 6 pK2.

Moreover, assumption (12) also ensures that

|w−u| [ 2 ea V 1 r
w
2 |w|.
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Then, using the fact that u > w, we get

:r
w
VŒ 1 r
w
2−r

u
VŒ 1r
u
2: [ |w−u| sup

r ¥ [w, u]

:r
r2
VŒ 1r
r
2+r2

r3
V' 1r

r
2:

[ 2 eaK |w| K sup
r ¥ [w, u]

(1/r)

[ 2 K2 ea.

Finally, we can write

h1(r, e)=−2 ea F
1

r

r

u
VŒ 1r
u
2 du

`1−u2
+e2aM(r, e), (17)

with

|M(r, e)| [ 6 pK2+4 K2 F
1

r

du

`1−u2

[ 8 pK2,

which ends the proof of the proposition when r > 0. We conclude by
noticing that h1 is an even function, so that the estimate also holds when
r < 0.

Corollary 1. Let V be a radial potential satisfying assumptions
1., 2., 3. Then the scattering cross section Ye associated with V̌e(=ea V(| · |e ))
lies in L.([−p, p]) (for a given e > 0) and verifies

-h0 > 0, ,e0(h0) > 0, -e ¥ [0, e0(h0)], Ye([h0, p])=0, (18)

lim
eQ 0

e−1−2 a
m

2
F
p

−p
h2Ye(h) dh=z, (19)

with z defined by (8).

Proof of Corollary 1. We recall that Ye is defined by the formula

Ye(h)=
dr
dh
(h), if |h| [ hmax,

0 if |h| > hmax,

where the deflection angle h corresponds to the impact parameter r, the
potential being V̌e, and hmax is the largest possible angle of deflection. Note
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that h is a decreasing function of r, so that r is also a decreasing function
of h, and dr

dh is well defined.
Then, it is easy to see that

Ye(h)=e Fe(h),

where Fe is the scattering cross section associated with the potential ea V
(Cf. [De, Pu] for example).

Note first that according to Proposition 1,

h1(r, e) [ p ea sup
r ¥ [0, 1]

|r VŒ(r)|+C e2a,

with C independant of r, so that hmax [ CŒ ea, and (18) clearly holds.
Moreover,

m

2
F
p

−p
h2Ye(h) dh=e

m

2
F
p

−p
h2Fe(h) dh

=e
m

2
F
1

−1
h1(r, e)2 dr

=e1+2az+O(e1+3a),

which ends the proof of Corollary 1.

4. PROOF OF THEOREM 1

In order to study the asymptotic behavior of fe when e Q 0, we are led
to compare fe to the solution he of the following Boltzmann equation:

(“t+v·Nx) he(t, x, v)=m F
p

h=−p
Ce(|h|){he(t, x, Rh(v))−he(t, x, v)} dh,

he(0, x, v)=fin(x, v).

(20)

Here, Rh denotes the rotation of angle h and Ce=e−1−2a Ye, where Ye is
defined in Corollary 1.

It is clear thanks to corollary 1 that Ce is a family of functions satisfy-
ing

-h0 > 0, lim
eQ 0

F
h0 < |h| < p

Ce(h) dh=0, (21)

lim
eQ 0

m

2
F
p

−p
h2 Ce(h) dh=z. (22)
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Such a family of cross sections is said (usually in a nonlinear context)
to ‘‘concentrate on grazing collisions’’ (Cf. [Vil]).

Formally, we can easily derive (7) from (20) by observing that condi-
tion (21) allows us to consider only small rotation angles in the integral.
Then we can perform a Taylor’s expansion of he(t, x, Rh(v)) with respect to
the last argument

he(t, x, Rh(v))=he(t, x, v)+(Rh(v)−v) ·Nvhe(t, x, v)

+12 (Rh(v)−v) é (Rh(v)−v) : NvNvhe(t, x, v)+O(||Rh(v)−v||3)

and, by inserting this expression in the right-hand side of (20), we obtain

m F
p

h=−p
Ce(|h|){he(t, x, Rh(v))−he(t, x, v)} dh

=m
gvhe
2

F
p

h=−p
Ce(|h|) h2dh+f(E).

which in the limit E Q 0 is the right-hand side of (7).
This computation can be made rigorous without difficulty. It yields

the

Proposition 2. Suppose that fin is a nonnegative initial datum lying
in L2(R2×S1) and that for all e > 0, the cross section Ce belongs to
L.([0, p]). Then there exists a unique weak solution he to (20) in
C([0, T]; L2(R2×S1)). If moreover the family Ce satisfies (21), (22), then
the sequence he converges when e Q 0 in (for example) C([0, T];
W −2, 1
loc (R

2×S1)) towards h weak solution of (7).

Therefore, in order to prove our main theorem (Theorem 1), it is
enough to show that he and fe are close when e Q 0 (in a topology at least
as strong as that of W −2, 1

loc ). Accordingly, the remaining part of this work is
devoted to the proof of the following proposition:

Proposition 3. Assume that a ¥ ]0, 1/8[ and d=2a+1. Let the
initial datum fin belong to L1 5W1,.(R2×R2) and V be a potential
satisfying 1., 2., 3. Then, the function fe defined in (6) and he in (20) are
asymptotically close in L1loc. More precisely, for all R > 0,

lim
eQ 0
||fe−he||L.([0, T]; L1(B(0, R)×S1))=0.

Proof of Proposition 3. We define

q1(cN)=q({cN ¥ B(x)N, -i=1...N, |ci−x| > e}), (23)
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that is q1=1 if the particle is outside the range of all scatterers at time 0.
When q1=1, the conservation of energy entails that the velocity of the
particle will always be less than 1, so that only the scatterers at distance less
than t can influence the trajectory of the particle up to time t.

Noticing that as soon as a < 1/2 (i.e. d < 2),

E e(q1) \ 1−j(e),

(that is, we are in a situation in which, asymptotically, the particle is ini-
tially almost surely outside of the range of all the scatterers) we see that fe
can be expanded as:

fe(t, x, v)=e−me |B(x, t)| C
N \ 0

mNe
N!

F
B(x)N
dcNq1(cN) fin(T

−t
cN (x, v))+j(e). (24)

We can distinguish between external obstacles, c ¥ c 5 B(x, t) such that

inf
0 [ s [ t

|xc(s)−c| \ e, (25)

and internal obstacles, c ¥ c 5 B(x, t) such that

inf
0 [ s [ t

|xc(s)−c| < e. (26)

A given configuration cN of B(x, t)N can be decomposed as:

cN=aP 2 bQ,

where aP is the set of all external obstacles and bQ is the set of all internal
ones.

After suitable manipulations, and recalling that the external scatterers
do not influence the trajectory, we have in fact

fe(t, x, v)= C
Q \ 0

mQe
Q!

F
B(x)Q
dbQe−me |T(bQ)|q1(bQ)

×q({the bQ are internal}) fin(T
−t
bQ (x, v))+j(e),

where T(bQ) is the tube (at time t) defined by

T(bQ)={y ¥ B(x, t), ,s ¥ [0, t], |y−xbQ(s)| < e}. (27)
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Since the velocity of the particle is always less than 1, one has

|T(bQ)| [ 2 t e. (28)

We then introduce the characteristic function q2 of distributions of
scatterers for which there is no overlapping of internal scatterers, that is

q2(bQ)=q({bQ ¥ B(x)Q, - 1 [ i < j [ Q, |bi−bj| > 2 e}). (29)

It is then easy to prove (Cf. [De, Pu]) that if a < 1/4 (i.e. d < 32), one has

C
Q \ 0

mQe
Q!

F
B(x)Q
e−me |T(bQ)|q({bQ …T(bQ)}) q1q2(bQ) dbQ \ 1−j(e). (30)

Note however that the probability of overlapping of a pair of not neces-
sarily internal obstacles is asymptotically 1 even for a=0 (i.e. d=1).

Then,

fe(t, x, v)= C
Q \ 0

mQe
Q!

F
B(x)Q
dbQe−me |T(bQ)|q1(bQ) q2(bQ)

×q({the bQ are internal}) fin(T
−t
bQ (x, v))+j(e).

From now on, we shall replace for the sake of simplicity the flow T −tbQ by
the flow T tbQ. The result will be the same thanks to the reversibility of this
Hamiltonian flow.

Remark. Notice that the bound a < 1/4 doesn’t depend on the
dimension. As we will see, this will fix the bound on a in dimension higher
than 2.

For a given configuration bQ ¥ B(x)Q such that q1q2(bQ)=1 and such
that the bi’s are internal for i=1...Q, we define the characteristic function
q3 of the set of configurations for which there is no recollisions (up to time
t) of the light particle with a given obstacle:

q3(bQ)=q({bQ, -i=1...Q, x
−1
bQ (B(bi, e)) is connected in [0, t]}). (31)

Instead of fe, we first analyse f̃e, defined by

f̃e(t, x, v)=e−2 t me e C
Q \ 0

mQe
Q!

F
B(x)Q

q({bQ …T(bQ)})

×q1q2q3(bQ) f0(T
t
bQ(x, v)) dbQ. (32)
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Note that thanks to (28), we already know that

f̃e [ fe+j(e). (33)

We now proceed as in [De, Pu].
We say that the light particle performs a collision with the scatterer bi

when it enters into its protection disk B(bi, e). For a configuration such
that q1q2q3=1, the light particle has a straight trajectory between two
separated collisions with different scatterers. During the collision with the
obstacle bi (i.e. for the times t such that |xbQ(t)−bi| [ e), the dynamics is
that of a particle moving in the potential V̌e( · −bi).

For a trajectory corresponding to a configuration such that q1q2q3=1,
one can define, for each obstacle bi ¥ bQ (i=1...Q), the time ti of the first
(and unique because q3=1) entrance in the protection disk B(bi, e), and the
(unique) time t −i > ti when the light particle gets out of this protection disk.
We also define the impact parameter ri, which is the algebraic distance
between bi and the straight line containing the straight trajectory followed
by the light particle immediately before ti.

Then we use the change of variables (which depends upon t, x, v, e)

Z: bQQ {ri, ti}
Q
i=1 (bQ)

which is well-defined on the set C … B(x)Q of ‘‘well-ordered’’ config-
urations bQ constituted of internal scatterers satisfying the property
q1q2q3(bQ)=1.

The variables {ri, ti}
Q
i=1 satisfy then the constraints

0 [ t1 < t2 < · · · < tQ [ t, (34)

and

-i=1, ..., Q, |ri| < e. (35)

The inverse mapping Z−1 is built as follows: Let a sequence {ri, ti}
Q
i=1

satisfying (34) and (35) be given. We build a corresponding sequence of
obstacles bQ=b1 .. bQ and a trajectory (t(s), u(s)) inductively. Suppose that
one has been able to define the obstacles b1 .. bi−1 and a trajectory
(t(s), u(s)) up to the time ti−1. We then define the trajectory between times
ti−1 and ti as that of the evolution of a particle moving in the potential
V̌e( · −bi−1) with initial datum at time ti−1 given by (t(ti−1), u(ti−1)). Then,
y −i−1 > ti−1 is defined to be the first time of exit of the trajectory from the
protection disk of bi−1. Finally bi is defined to be the only point at distance
e of t(ti) and algebraic distance ri from the straight line which is tangent to
the trajectory at the point t(ti).
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Then it is easy to describe the range of Z. The {ri, ti}
Q
i=1 which do not

belong to this range correspond to at least one of those situations:

1. A bad beginning occurs:

,i=1, ..., Q, t(0) ¥ B(bi, e)

(this corresponds to q1=0),

2. two scatterers overlap:

,i, j ¥ [1, ..., Q], |bi−bj| [ 2 e

(this corresponds to q2=0),

3. a ‘‘recollision’’ happens somewhere:

,i ] j ¥ [1, ..., Q], bj ¥ 0
s ¥ ]ti, ti+1[

B(t(s), 2e)

(this corresponds to q3=0 and in its turn splits into the cases when i > j,
proper recollisions, and when i < j, sometimes called interferences).

Performing the described change of variable, we get

f̃e(t, x, v)=e−2 t me e C
Q \ 0

mQe F
t

0
dt1 F

t

t1
dt2...F

t

tQ−1
dtQ F

e

− e
dr1 F

e

− e
dr2...F

e

− e
drQ

q({ri, ti}
Q
i=1 is in the range of Z) f0(t(t), u(t))+j(e). (36)

We now introduce the

Lemma 1. As soon as a < 1/8 (i.e. d < 5/4), one has

Ie=e−2 t me e C
Q \ 0

mQe F
t

0
dt1 F

t

t1
dt2...F

t

tQ−1
dtQ F

e

− e
dr1 F

e

− e
dr2...F

e

− e
drQ

q({ri, ti}
Q
i=1 is not in the range of Z) [ j(e). (37)

Proof of Lemma 1. We can write

Ie [ I
1
e+I

2
e+I

3
e,

where each term corresponds to the situations described earlier. Then, as in
[De, Pu], we notice that

I1e+I
2
e+I

3
e [ J

i
e+J

ii
e ,
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where J ie estimates the probability of overlapping of two successive scat-
terers bi, bi+1 (including the beginning of the trajectory, with the con-
vention t0=0, h0=0, x=b0), and J iie estimates the probability of other
possible overlappings and recollisions.

We begin with the estimate on J ie:

J ie=e
−2 t me e C

Q \ 1
mQe F

t

0
dt1 F

t

t1
dt2...F

t

tQ−1
dtQ

×F
e

− e
dr1 F

e

− e
dr2...F

e

− e
drQ C

Q−1

i=0
q({|bi−bi+1| [ 2 e})

[ C e5 −2d. (38)

Then, we turn to J iie :

J iie=J
ii
1, e+J

ii
2, e=e

−2 t me e C
Q \ 1

mQe F
t

0
dt1 F

t

t1
dt2...F

t

tQ−1
dtQ

×F
e

− e
dr1 F

e

− e
dr2...F

e

− e
drQ 5 C

Q−1

i=0
C
Q

j=i+2
q 13bj ¥ 0

s ¥ ]ti, ti+1[
B(t(s), 2 e)4

+C
Q

i=2
C
i−1

j=1
q 13bj ¥ 0

s ¥ ]ti, ti+1[
B(t(s), 2 e)426 . (39)

We only estimate J ii1, e, the estimate of J ii2, e being completely analogous.
Note first that, denoting as usual by hi the scattering angle corre-

sponding to the impact parameter ri, a recollision (or overlapping of non
consecutive scatterers) can occur only if the rotation angle |; j−1

k=i+1 hk| is
bigger than p. Since we know moreover that for all k ¥ ]i+1, j−1[,
|hk| [ Cea, it means that we can find h ¥ ]i+1, j−1[ such that

:p/2− C
h−1

k=i+1
hk: [ p/4.

Then, we can write

J ii1, e [ e
−2 t me e C

Q \ 1
mQe F

t

0
dt1 F

t

t1
dt2...F

t

tQ−1
dtQ F

e

− e
dr1 F

e

− e
dr2...F

e

− e
drQ

× C
Q−1

i=0
C
Q

j=i+2
C
j

h=i+1
q({|hi+1+...+hh−1−p/2| [ p/4})

×q 13bj ¥ 0
s ¥ ]ti, ti+1[

B(t(s), 2 e)42 .
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Figure 1

Fixing all times but th in the sequence t1, ..., tQ, and noticing that th can
assume values in a set of measure at most 4`2 e (see Fig. 1), we finally
get:

J ii1, e [ e
−2 t me e C

Q \ 1

(2 me e)Q

(Q−1)!
Q3tQ−1e

[ C(T) e5−4d, (40)

so that Lemma 1 is proved. L

Remark. By applying the same technique in dimension d higher
than 2, we would get from the estimate of the recollision probability
a < (d−1)/8.

The final bound for a is then given in this case by the requirement to
have a negligeable probability for overlappings of internal obstacles in the
limit.

Thanks to lemma 1, we now can write

f̃e(t, x, v)=e−2 t me e C
Q \ 0

mQe F
t

0
dt1 F

t

t1
dt2...F

t

tQ−1
dtQ F

e

− e
dr1 F

e

− e
dr2...F

e

− e
drQ

q({ri, ti}
Q
i=1 is in the range of Z) fin(t(t), u(t))+j(e). (41)
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We make then the change of variables

{ri}i=1, ..., QQ {hi}i=1, ..., Q, (42)

where hi is the angle of the scattering produced by the i-th obstacle. The
Jacobian determinant of this change of variables is given by <Q

i=1
dri
dhi
=

<Q
i=1 Ye(hi)=<Q

i=1 e1+2a Ce(hi). We now use the following estimates:

:t(t)−1x+C
Q

i=0
Rki(v) (ti+1−ti)2: [ Q e (43)

|ti−t
−

i| [ 3 e, (44)

|u(t −i)− u(ti)|=O(ea), (45)

(here kj is defined as kj=; j
i=1 hi, with the convention k0=0 and t0=0,

tQ+1=t). Using also the fact that fin lies inW1,., we get

f̃e(t, x, v)=e−t m >
p
−p dhCe(h) C

Q \ 0
mQ F

t

0
dt1 F

t

t1
dt2...F

t

tQ−1
dtQ F

p

−p
dh1

×F
p

−p
dh2...F

p

−p
dhQ

×D
Q

i=1
Ce(hi) f0 1x+C

Q

i=0
Rki(v) (ti+1−ti), RkQ(v)2+j(e). (46)

But the right-hand side of (46) is nothing else than he in the form of the
series solution to (20), so that f̃e=he+j(e).

Using now (33) and the conservation of mass:

F he dxdv=F f0 dxdv,

we also see that

fe−heQ 0

in L.t (L
1
loc, x, v). L
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